799 lines
27 KiB
Rust
799 lines
27 KiB
Rust
//! I2C-compatible Two Wire Interface in slave mode (TWIM) driver.
|
|
|
|
#![macro_use]
|
|
|
|
use core::future::{poll_fn, Future};
|
|
use core::marker::PhantomData;
|
|
use core::sync::atomic::compiler_fence;
|
|
use core::sync::atomic::Ordering::SeqCst;
|
|
use core::task::Poll;
|
|
|
|
use embassy_hal_common::{into_ref, PeripheralRef};
|
|
use embassy_sync::waitqueue::AtomicWaker;
|
|
#[cfg(feature = "time")]
|
|
use embassy_time::{Duration, Instant};
|
|
|
|
use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE};
|
|
use crate::gpio::Pin as GpioPin;
|
|
use crate::interrupt::{self, Interrupt, InterruptExt};
|
|
use crate::util::slice_in_ram_or;
|
|
use crate::{gpio, pac, Peripheral};
|
|
|
|
/// TWIS config.
|
|
#[non_exhaustive]
|
|
pub struct Config {
|
|
/// First address
|
|
pub address0: u8,
|
|
|
|
/// Second address, optional.
|
|
pub address1: Option<u8>,
|
|
|
|
/// Overread character.
|
|
///
|
|
/// If the master keeps clocking the bus after all the bytes in the TX buffer have
|
|
/// already been transmitted, this byte will be constantly transmitted.
|
|
pub orc: u8,
|
|
|
|
/// Enable high drive for the SDA line.
|
|
pub sda_high_drive: bool,
|
|
|
|
/// Enable internal pullup for the SDA line.
|
|
///
|
|
/// Note that using external pullups is recommended for I2C, and
|
|
/// most boards already have them.
|
|
pub sda_pullup: bool,
|
|
|
|
/// Enable high drive for the SCL line.
|
|
pub scl_high_drive: bool,
|
|
|
|
/// Enable internal pullup for the SCL line.
|
|
///
|
|
/// Note that using external pullups is recommended for I2C, and
|
|
/// most boards already have them.
|
|
pub scl_pullup: bool,
|
|
}
|
|
|
|
impl Default for Config {
|
|
fn default() -> Self {
|
|
Self {
|
|
address0: 0x55,
|
|
address1: None,
|
|
orc: 0x00,
|
|
scl_high_drive: false,
|
|
sda_pullup: false,
|
|
sda_high_drive: false,
|
|
scl_pullup: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
enum Status {
|
|
Read,
|
|
Write,
|
|
}
|
|
|
|
/// TWIS error.
|
|
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
#[non_exhaustive]
|
|
pub enum Error {
|
|
/// TX buffer was too long.
|
|
TxBufferTooLong,
|
|
/// RX buffer was too long.
|
|
RxBufferTooLong,
|
|
/// Didn't receive an ACK bit after a data byte.
|
|
DataNack,
|
|
/// Bus error.
|
|
Bus,
|
|
/// The buffer is not in data RAM. It's most likely in flash, and nRF's DMA cannot access flash.
|
|
BufferNotInRAM,
|
|
/// Overflow
|
|
Overflow,
|
|
/// Overread
|
|
OverRead,
|
|
/// Timeout
|
|
Timeout,
|
|
}
|
|
|
|
/// Received command
|
|
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
|
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
|
pub enum Command {
|
|
/// Read
|
|
Read,
|
|
/// Write+read
|
|
WriteRead(usize),
|
|
/// Write
|
|
Write(usize),
|
|
}
|
|
|
|
/// Interrupt handler.
|
|
pub struct InterruptHandler<T: Instance> {
|
|
_phantom: PhantomData<T>,
|
|
}
|
|
|
|
impl<T: Instance> interrupt::Handler<T::Interrupt> for InterruptHandler<T> {
|
|
unsafe fn on_interrupt() {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
if r.events_read.read().bits() != 0 || r.events_write.read().bits() != 0 {
|
|
s.waker.wake();
|
|
r.intenclr.modify(|_r, w| w.read().clear().write().clear());
|
|
}
|
|
if r.events_stopped.read().bits() != 0 {
|
|
s.waker.wake();
|
|
r.intenclr.modify(|_r, w| w.stopped().clear());
|
|
}
|
|
if r.events_error.read().bits() != 0 {
|
|
s.waker.wake();
|
|
r.intenclr.modify(|_r, w| w.error().clear());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// TWIS driver.
|
|
pub struct Twis<'d, T: Instance> {
|
|
_p: PeripheralRef<'d, T>,
|
|
}
|
|
|
|
impl<'d, T: Instance> Twis<'d, T> {
|
|
/// Create a new TWIS driver.
|
|
pub fn new(
|
|
twis: impl Peripheral<P = T> + 'd,
|
|
_irq: impl interrupt::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
|
|
sda: impl Peripheral<P = impl GpioPin> + 'd,
|
|
scl: impl Peripheral<P = impl GpioPin> + 'd,
|
|
config: Config,
|
|
) -> Self {
|
|
into_ref!(twis, sda, scl);
|
|
|
|
let r = T::regs();
|
|
|
|
// Configure pins
|
|
sda.conf().write(|w| {
|
|
w.dir().input();
|
|
w.input().connect();
|
|
if config.sda_high_drive {
|
|
w.drive().h0d1();
|
|
} else {
|
|
w.drive().s0d1();
|
|
}
|
|
if config.sda_pullup {
|
|
w.pull().pullup();
|
|
}
|
|
w
|
|
});
|
|
scl.conf().write(|w| {
|
|
w.dir().input();
|
|
w.input().connect();
|
|
if config.scl_high_drive {
|
|
w.drive().h0d1();
|
|
} else {
|
|
w.drive().s0d1();
|
|
}
|
|
if config.scl_pullup {
|
|
w.pull().pullup();
|
|
}
|
|
w
|
|
});
|
|
|
|
// Select pins.
|
|
r.psel.sda.write(|w| unsafe { w.bits(sda.psel_bits()) });
|
|
r.psel.scl.write(|w| unsafe { w.bits(scl.psel_bits()) });
|
|
|
|
// Enable TWIS instance.
|
|
r.enable.write(|w| w.enable().enabled());
|
|
|
|
// Disable all events interrupts
|
|
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
|
|
|
|
// Set address
|
|
r.address[0].write(|w| unsafe { w.address().bits(config.address0) });
|
|
r.config.write(|w| w.address0().enabled());
|
|
if let Some(address1) = config.address1 {
|
|
r.address[1].write(|w| unsafe { w.address().bits(address1) });
|
|
r.config.modify(|_r, w| w.address1().enabled());
|
|
}
|
|
|
|
// Set over-read character
|
|
r.orc.write(|w| unsafe { w.orc().bits(config.orc) });
|
|
|
|
// Generate suspend on read event
|
|
r.shorts.write(|w| w.read_suspend().enabled());
|
|
|
|
unsafe { T::Interrupt::steal() }.unpend();
|
|
unsafe { T::Interrupt::steal() }.enable();
|
|
|
|
Self { _p: twis }
|
|
}
|
|
|
|
/// Set TX buffer, checking that it is in RAM and has suitable length.
|
|
unsafe fn set_tx_buffer(&mut self, buffer: &[u8]) -> Result<(), Error> {
|
|
slice_in_ram_or(buffer, Error::BufferNotInRAM)?;
|
|
|
|
if buffer.len() > EASY_DMA_SIZE {
|
|
return Err(Error::TxBufferTooLong);
|
|
}
|
|
|
|
let r = T::regs();
|
|
|
|
r.txd.ptr.write(|w|
|
|
// We're giving the register a pointer to the stack. Since we're
|
|
// waiting for the I2C transaction to end before this stack pointer
|
|
// becomes invalid, there's nothing wrong here.
|
|
//
|
|
// The PTR field is a full 32 bits wide and accepts the full range
|
|
// of values.
|
|
w.ptr().bits(buffer.as_ptr() as u32));
|
|
r.txd.maxcnt.write(|w|
|
|
// We're giving it the length of the buffer, so no danger of
|
|
// accessing invalid memory. We have verified that the length of the
|
|
// buffer fits in an `u8`, so the cast to `u8` is also fine.
|
|
//
|
|
// The MAXCNT field is 8 bits wide and accepts the full range of
|
|
// values.
|
|
w.maxcnt().bits(buffer.len() as _));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Set RX buffer, checking that it has suitable length.
|
|
unsafe fn set_rx_buffer(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
|
|
// NOTE: RAM slice check is not necessary, as a mutable
|
|
// slice can only be built from data located in RAM.
|
|
|
|
if buffer.len() > EASY_DMA_SIZE {
|
|
return Err(Error::RxBufferTooLong);
|
|
}
|
|
|
|
let r = T::regs();
|
|
|
|
r.rxd.ptr.write(|w|
|
|
// We're giving the register a pointer to the stack. Since we're
|
|
// waiting for the I2C transaction to end before this stack pointer
|
|
// becomes invalid, there's nothing wrong here.
|
|
//
|
|
// The PTR field is a full 32 bits wide and accepts the full range
|
|
// of values.
|
|
w.ptr().bits(buffer.as_mut_ptr() as u32));
|
|
r.rxd.maxcnt.write(|w|
|
|
// We're giving it the length of the buffer, so no danger of
|
|
// accessing invalid memory. We have verified that the length of the
|
|
// buffer fits in an `u8`, so the cast to the type of maxcnt
|
|
// is also fine.
|
|
//
|
|
// Note that that nrf52840 maxcnt is a wider
|
|
// type than a u8, so we use a `_` cast rather than a `u8` cast.
|
|
// The MAXCNT field is thus at least 8 bits wide and accepts the
|
|
// full range of values that fit in a `u8`.
|
|
w.maxcnt().bits(buffer.len() as _));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn clear_errorsrc(&mut self) {
|
|
let r = T::regs();
|
|
r.errorsrc
|
|
.write(|w| w.overflow().bit(true).overread().bit(true).dnack().bit(true));
|
|
}
|
|
|
|
/// Returns matched address for latest command.
|
|
pub fn address_match(&self) -> u8 {
|
|
let r = T::regs();
|
|
r.address[r.match_.read().bits() as usize].read().address().bits()
|
|
}
|
|
|
|
/// Returns the index of the address matched in the latest command.
|
|
pub fn address_match_index(&self) -> usize {
|
|
T::regs().match_.read().bits() as _
|
|
}
|
|
|
|
/// Wait for read, write, stop or error
|
|
fn blocking_listen_wait(&mut self) -> Result<Status, Error> {
|
|
let r = T::regs();
|
|
loop {
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
while r.events_stopped.read().bits() == 0 {}
|
|
return Err(Error::Overflow);
|
|
}
|
|
if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
return Err(Error::Bus);
|
|
}
|
|
if r.events_read.read().bits() != 0 {
|
|
r.events_read.reset();
|
|
return Ok(Status::Read);
|
|
}
|
|
if r.events_write.read().bits() != 0 {
|
|
r.events_write.reset();
|
|
return Ok(Status::Write);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Wait for stop, repeated start or error
|
|
fn blocking_listen_wait_end(&mut self, status: Status) -> Result<Command, Error> {
|
|
let r = T::regs();
|
|
loop {
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Err(Error::Overflow);
|
|
} else if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
return match status {
|
|
Status::Read => Ok(Command::Read),
|
|
Status::Write => {
|
|
let n = r.rxd.amount.read().bits() as usize;
|
|
Ok(Command::Write(n))
|
|
}
|
|
};
|
|
} else if r.events_read.read().bits() != 0 {
|
|
r.events_read.reset();
|
|
let n = r.rxd.amount.read().bits() as usize;
|
|
return Ok(Command::WriteRead(n));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Wait for stop or error
|
|
fn blocking_wait(&mut self) -> Result<usize, Error> {
|
|
let r = T::regs();
|
|
loop {
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
let errorsrc = r.errorsrc.read();
|
|
if errorsrc.overread().is_detected() {
|
|
return Err(Error::OverRead);
|
|
} else if errorsrc.dnack().is_received() {
|
|
return Err(Error::DataNack);
|
|
} else {
|
|
return Err(Error::Bus);
|
|
}
|
|
} else if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
let n = r.txd.amount.read().bits() as usize;
|
|
return Ok(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Wait for stop or error with timeout
|
|
#[cfg(feature = "time")]
|
|
fn blocking_wait_timeout(&mut self, timeout: Duration) -> Result<usize, Error> {
|
|
let r = T::regs();
|
|
let deadline = Instant::now() + timeout;
|
|
loop {
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
let errorsrc = r.errorsrc.read();
|
|
if errorsrc.overread().is_detected() {
|
|
return Err(Error::OverRead);
|
|
} else if errorsrc.dnack().is_received() {
|
|
return Err(Error::DataNack);
|
|
} else {
|
|
return Err(Error::Bus);
|
|
}
|
|
} else if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
let n = r.txd.amount.read().bits() as usize;
|
|
return Ok(n);
|
|
} else if Instant::now() > deadline {
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Err(Error::Timeout);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Wait for read, write, stop or error with timeout
|
|
#[cfg(feature = "time")]
|
|
fn blocking_listen_wait_timeout(&mut self, timeout: Duration) -> Result<Status, Error> {
|
|
let r = T::regs();
|
|
let deadline = Instant::now() + timeout;
|
|
loop {
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
while r.events_stopped.read().bits() == 0 {}
|
|
return Err(Error::Overflow);
|
|
}
|
|
if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
return Err(Error::Bus);
|
|
}
|
|
if r.events_read.read().bits() != 0 {
|
|
r.events_read.reset();
|
|
return Ok(Status::Read);
|
|
}
|
|
if r.events_write.read().bits() != 0 {
|
|
r.events_write.reset();
|
|
return Ok(Status::Write);
|
|
}
|
|
if Instant::now() > deadline {
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Err(Error::Timeout);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Wait for stop, repeated start or error with timeout
|
|
#[cfg(feature = "time")]
|
|
fn blocking_listen_wait_end_timeout(&mut self, status: Status, timeout: Duration) -> Result<Command, Error> {
|
|
let r = T::regs();
|
|
let deadline = Instant::now() + timeout;
|
|
loop {
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Err(Error::Overflow);
|
|
} else if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
return match status {
|
|
Status::Read => Ok(Command::Read),
|
|
Status::Write => {
|
|
let n = r.rxd.amount.read().bits() as usize;
|
|
Ok(Command::Write(n))
|
|
}
|
|
};
|
|
} else if r.events_read.read().bits() != 0 {
|
|
r.events_read.reset();
|
|
let n = r.rxd.amount.read().bits() as usize;
|
|
return Ok(Command::WriteRead(n));
|
|
} else if Instant::now() > deadline {
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Err(Error::Timeout);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Wait for stop or error
|
|
fn async_wait(&mut self) -> impl Future<Output = Result<usize, Error>> {
|
|
poll_fn(move |cx| {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
s.waker.register(cx.waker());
|
|
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
let errorsrc = r.errorsrc.read();
|
|
if errorsrc.overread().is_detected() {
|
|
return Poll::Ready(Err(Error::OverRead));
|
|
} else if errorsrc.dnack().is_received() {
|
|
return Poll::Ready(Err(Error::DataNack));
|
|
} else {
|
|
return Poll::Ready(Err(Error::Bus));
|
|
}
|
|
} else if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
let n = r.txd.amount.read().bits() as usize;
|
|
return Poll::Ready(Ok(n));
|
|
}
|
|
|
|
Poll::Pending
|
|
})
|
|
}
|
|
|
|
/// Wait for read or write
|
|
fn async_listen_wait(&mut self) -> impl Future<Output = Result<Status, Error>> {
|
|
poll_fn(move |cx| {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
s.waker.register(cx.waker());
|
|
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Poll::Ready(Err(Error::Overflow));
|
|
} else if r.events_read.read().bits() != 0 {
|
|
r.events_read.reset();
|
|
return Poll::Ready(Ok(Status::Read));
|
|
} else if r.events_write.read().bits() != 0 {
|
|
r.events_write.reset();
|
|
return Poll::Ready(Ok(Status::Write));
|
|
} else if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
return Poll::Ready(Err(Error::Bus));
|
|
}
|
|
Poll::Pending
|
|
})
|
|
}
|
|
|
|
/// Wait for stop, repeated start or error
|
|
fn async_listen_wait_end(&mut self, status: Status) -> impl Future<Output = Result<Command, Error>> {
|
|
poll_fn(move |cx| {
|
|
let r = T::regs();
|
|
let s = T::state();
|
|
|
|
s.waker.register(cx.waker());
|
|
|
|
// stop if an error occured
|
|
if r.events_error.read().bits() != 0 {
|
|
r.events_error.reset();
|
|
r.tasks_stop.write(|w| unsafe { w.bits(1) });
|
|
return Poll::Ready(Err(Error::Overflow));
|
|
} else if r.events_stopped.read().bits() != 0 {
|
|
r.events_stopped.reset();
|
|
return match status {
|
|
Status::Read => Poll::Ready(Ok(Command::Read)),
|
|
Status::Write => {
|
|
let n = r.rxd.amount.read().bits() as usize;
|
|
Poll::Ready(Ok(Command::Write(n)))
|
|
}
|
|
};
|
|
} else if r.events_read.read().bits() != 0 {
|
|
r.events_read.reset();
|
|
let n = r.rxd.amount.read().bits() as usize;
|
|
return Poll::Ready(Ok(Command::WriteRead(n)));
|
|
}
|
|
Poll::Pending
|
|
})
|
|
}
|
|
|
|
fn setup_respond_from_ram(&mut self, buffer: &[u8], inten: bool) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
|
|
compiler_fence(SeqCst);
|
|
|
|
// Set up the DMA write.
|
|
unsafe { self.set_tx_buffer(buffer)? };
|
|
|
|
// Clear events
|
|
r.events_stopped.reset();
|
|
r.events_error.reset();
|
|
self.clear_errorsrc();
|
|
|
|
if inten {
|
|
r.intenset.write(|w| w.stopped().set().error().set());
|
|
} else {
|
|
r.intenclr.write(|w| w.stopped().clear().error().clear());
|
|
}
|
|
|
|
// Start write operation.
|
|
r.tasks_preparetx.write(|w| unsafe { w.bits(1) });
|
|
r.tasks_resume.write(|w| unsafe { w.bits(1) });
|
|
Ok(())
|
|
}
|
|
|
|
fn setup_respond(&mut self, wr_buffer: &[u8], inten: bool) -> Result<(), Error> {
|
|
match self.setup_respond_from_ram(wr_buffer, inten) {
|
|
Ok(_) => Ok(()),
|
|
Err(Error::BufferNotInRAM) => {
|
|
trace!("Copying TWIS tx buffer into RAM for DMA");
|
|
let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..wr_buffer.len()];
|
|
tx_ram_buf.copy_from_slice(wr_buffer);
|
|
self.setup_respond_from_ram(&tx_ram_buf, inten)
|
|
}
|
|
Err(error) => Err(error),
|
|
}
|
|
}
|
|
|
|
fn setup_listen(&mut self, buffer: &mut [u8], inten: bool) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
compiler_fence(SeqCst);
|
|
|
|
// Set up the DMA read.
|
|
unsafe { self.set_rx_buffer(buffer)? };
|
|
|
|
// Clear events
|
|
r.events_read.reset();
|
|
r.events_write.reset();
|
|
r.events_stopped.reset();
|
|
r.events_error.reset();
|
|
self.clear_errorsrc();
|
|
|
|
if inten {
|
|
r.intenset
|
|
.write(|w| w.stopped().set().error().set().read().set().write().set());
|
|
} else {
|
|
r.intenclr
|
|
.write(|w| w.stopped().clear().error().clear().read().clear().write().clear());
|
|
}
|
|
|
|
// Start read operation.
|
|
r.tasks_preparerx.write(|w| unsafe { w.bits(1) });
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn setup_listen_end(&mut self, inten: bool) -> Result<(), Error> {
|
|
let r = T::regs();
|
|
compiler_fence(SeqCst);
|
|
|
|
// Clear events
|
|
r.events_read.reset();
|
|
r.events_write.reset();
|
|
r.events_stopped.reset();
|
|
r.events_error.reset();
|
|
self.clear_errorsrc();
|
|
|
|
if inten {
|
|
r.intenset.write(|w| w.stopped().set().error().set().read().set());
|
|
} else {
|
|
r.intenclr.write(|w| w.stopped().clear().error().clear().read().clear());
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Wait for commands from an I2C master.
|
|
/// `buffer` is provided in case master does a 'write' and is unused for 'read'.
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
/// To know which one of the addresses were matched, call `address_match` or `address_match_index`
|
|
pub fn blocking_listen(&mut self, buffer: &mut [u8]) -> Result<Command, Error> {
|
|
self.setup_listen(buffer, false)?;
|
|
let status = self.blocking_listen_wait()?;
|
|
if status == Status::Write {
|
|
self.setup_listen_end(false)?;
|
|
let command = self.blocking_listen_wait_end(status)?;
|
|
return Ok(command);
|
|
}
|
|
Ok(Command::Read)
|
|
}
|
|
|
|
/// Respond to an I2C master READ command.
|
|
/// Returns the number of bytes written.
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub fn blocking_respond_to_read(&mut self, buffer: &[u8]) -> Result<usize, Error> {
|
|
self.setup_respond(buffer, false)?;
|
|
self.blocking_wait()
|
|
}
|
|
|
|
/// Same as [`blocking_respond_to_read`](Twis::blocking_respond_to_read) but will fail instead of copying data into RAM.
|
|
/// Consult the module level documentation to learn more.
|
|
pub fn blocking_respond_to_read_from_ram(&mut self, buffer: &[u8]) -> Result<usize, Error> {
|
|
self.setup_respond_from_ram(buffer, false)?;
|
|
self.blocking_wait()
|
|
}
|
|
|
|
// ===========================================
|
|
|
|
/// Wait for commands from an I2C master, with timeout.
|
|
/// `buffer` is provided in case master does a 'write' and is unused for 'read'.
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
/// To know which one of the addresses were matched, call `address_match` or `address_match_index`
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_listen_timeout(&mut self, buffer: &mut [u8], timeout: Duration) -> Result<Command, Error> {
|
|
self.setup_listen(buffer, false)?;
|
|
let status = self.blocking_listen_wait_timeout(timeout)?;
|
|
if status == Status::Write {
|
|
self.setup_listen_end(false)?;
|
|
let command = self.blocking_listen_wait_end_timeout(status, timeout)?;
|
|
return Ok(command);
|
|
}
|
|
Ok(Command::Read)
|
|
}
|
|
|
|
/// Respond to an I2C master READ command with timeout.
|
|
/// Returns the number of bytes written.
|
|
/// See [`blocking_respond_to_read`].
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_respond_to_read_timeout(&mut self, buffer: &[u8], timeout: Duration) -> Result<usize, Error> {
|
|
self.setup_respond(buffer, false)?;
|
|
self.blocking_wait_timeout(timeout)
|
|
}
|
|
|
|
/// Same as [`blocking_respond_to_read_timeout`](Twis::blocking_respond_to_read_timeout) but will fail instead of copying data into RAM.
|
|
/// Consult the module level documentation to learn more.
|
|
#[cfg(feature = "time")]
|
|
pub fn blocking_respond_to_read_from_ram_timeout(
|
|
&mut self,
|
|
buffer: &[u8],
|
|
timeout: Duration,
|
|
) -> Result<usize, Error> {
|
|
self.setup_respond_from_ram(buffer, false)?;
|
|
self.blocking_wait_timeout(timeout)
|
|
}
|
|
|
|
// ===========================================
|
|
|
|
/// Wait asynchronously for commands from an I2C master.
|
|
/// `buffer` is provided in case master does a 'write' and is unused for 'read'.
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
/// To know which one of the addresses were matched, call `address_match` or `address_match_index`
|
|
pub async fn listen(&mut self, buffer: &mut [u8]) -> Result<Command, Error> {
|
|
self.setup_listen(buffer, true)?;
|
|
let status = self.async_listen_wait().await?;
|
|
if status == Status::Write {
|
|
self.setup_listen_end(true)?;
|
|
let command = self.async_listen_wait_end(status).await?;
|
|
return Ok(command);
|
|
}
|
|
Ok(Command::Read)
|
|
}
|
|
|
|
/// Respond to an I2C master READ command, asynchronously.
|
|
/// Returns the number of bytes written.
|
|
/// The buffer must have a length of at most 255 bytes on the nRF52832
|
|
/// and at most 65535 bytes on the nRF52840.
|
|
pub async fn respond_to_read(&mut self, buffer: &[u8]) -> Result<usize, Error> {
|
|
self.setup_respond(buffer, true)?;
|
|
self.async_wait().await
|
|
}
|
|
|
|
/// Same as [`respond_to_read`](Twis::respond_to_read) but will fail instead of copying data into RAM. Consult the module level documentation to learn more.
|
|
pub async fn respond_to_read_from_ram(&mut self, buffer: &[u8]) -> Result<usize, Error> {
|
|
self.setup_respond_from_ram(buffer, true)?;
|
|
self.async_wait().await
|
|
}
|
|
}
|
|
|
|
impl<'a, T: Instance> Drop for Twis<'a, T> {
|
|
fn drop(&mut self) {
|
|
trace!("twis drop");
|
|
|
|
// TODO: check for abort
|
|
|
|
// disable!
|
|
let r = T::regs();
|
|
r.enable.write(|w| w.enable().disabled());
|
|
|
|
gpio::deconfigure_pin(r.psel.sda.read().bits());
|
|
gpio::deconfigure_pin(r.psel.scl.read().bits());
|
|
|
|
trace!("twis drop: done");
|
|
}
|
|
}
|
|
|
|
pub(crate) mod sealed {
|
|
use super::*;
|
|
|
|
pub struct State {
|
|
pub waker: AtomicWaker,
|
|
}
|
|
|
|
impl State {
|
|
pub const fn new() -> Self {
|
|
Self {
|
|
waker: AtomicWaker::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait Instance {
|
|
fn regs() -> &'static pac::twis0::RegisterBlock;
|
|
fn state() -> &'static State;
|
|
}
|
|
}
|
|
|
|
/// TWIS peripheral instance.
|
|
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static {
|
|
/// Interrupt for this peripheral.
|
|
type Interrupt: Interrupt;
|
|
}
|
|
|
|
macro_rules! impl_twis {
|
|
($type:ident, $pac_type:ident, $irq:ident) => {
|
|
impl crate::twis::sealed::Instance for peripherals::$type {
|
|
fn regs() -> &'static pac::twis0::RegisterBlock {
|
|
unsafe { &*pac::$pac_type::ptr() }
|
|
}
|
|
fn state() -> &'static crate::twis::sealed::State {
|
|
static STATE: crate::twis::sealed::State = crate::twis::sealed::State::new();
|
|
&STATE
|
|
}
|
|
}
|
|
impl crate::twis::Instance for peripherals::$type {
|
|
type Interrupt = crate::interrupt::$irq;
|
|
}
|
|
};
|
|
}
|