embassy/embassy-lora/src/sx127x/sx127x_lora/mod.rs

540 lines
21 KiB
Rust
Raw Normal View History

// Copyright Charles Wade (https://github.com/mr-glt/sx127x_lora). Licensed under the Apache 2.0
// license
//
// Modifications made to make the driver work with the rust-lorawan link layer.
#![allow(dead_code)]
use bit_field::BitField;
use embassy_time::{Duration, Timer};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::spi::SpiBus;
mod register;
pub use self::register::IRQ;
2022-06-12 22:15:44 +02:00
use self::register::{PaConfig, Register};
/// Provides high-level access to Semtech SX1276/77/78/79 based boards connected to a Raspberry Pi
pub struct LoRa<SPI, CS, RESET> {
spi: SPI,
cs: CS,
reset: RESET,
pub explicit_header: bool,
pub mode: RadioMode,
}
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error<SPI, CS, RESET> {
Uninformative,
VersionMismatch(u8),
CS(CS),
Reset(RESET),
SPI(SPI),
Transmitting,
}
use Error::*;
use super::sx127x_lora::register::{FskDataModulationShaping, FskRampUpRamDown};
#[cfg(not(feature = "version_0x09"))]
const VERSION_CHECK: u8 = 0x12;
#[cfg(feature = "version_0x09")]
const VERSION_CHECK: u8 = 0x09;
impl<SPI, CS, RESET, E> LoRa<SPI, CS, RESET>
where
SPI: SpiBus<u8, Error = E>,
CS: OutputPin,
RESET: OutputPin,
{
/// Builds and returns a new instance of the radio. Only one instance of the radio should exist at a time.
/// This also preforms a hardware reset of the module and then puts it in standby.
pub fn new(spi: SPI, cs: CS, reset: RESET) -> Self {
Self {
spi,
cs,
reset,
explicit_header: true,
mode: RadioMode::Sleep,
}
}
pub async fn reset(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.reset.set_low().map_err(Reset)?;
Timer::after(Duration::from_millis(10)).await;
self.reset.set_high().map_err(Reset)?;
Timer::after(Duration::from_millis(10)).await;
let version = self.read_register(Register::RegVersion.addr()).await?;
if version == VERSION_CHECK {
self.set_mode(RadioMode::Sleep).await?;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegFifoTxBaseAddr.addr(), 0).await?;
self.write_register(Register::RegFifoRxBaseAddr.addr(), 0).await?;
let lna = self.read_register(Register::RegLna.addr()).await?;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegLna.addr(), lna | 0x03).await?;
self.write_register(Register::RegModemConfig3.addr(), 0x04).await?;
self.set_tcxo(true).await?;
self.set_mode(RadioMode::Stdby).await?;
self.cs.set_high().map_err(CS)?;
Ok(())
} else {
Err(Error::VersionMismatch(version))
}
}
pub async fn set_dio0_tx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegIrqFlagsMask.addr(), 0b1111_0111)
.await?;
let mapping = self.read_register(Register::RegDioMapping1.addr()).await?;
self.write_register(Register::RegDioMapping1.addr(), (mapping & 0x3F) | 0x40)
.await
}
pub async fn set_dio0_rx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegIrqFlagsMask.addr(), 0b0001_1111)
.await?;
let mapping = self.read_register(Register::RegDioMapping1.addr()).await?;
self.write_register(Register::RegDioMapping1.addr(), mapping & 0x3F)
.await
}
2022-06-12 22:15:44 +02:00
pub async fn transmit_start(&mut self, buffer: &[u8]) -> Result<(), Error<E, CS::Error, RESET::Error>> {
assert!(buffer.len() < 255);
if self.transmitting().await? {
//trace!("ALREADY TRANSMNITTING");
Err(Transmitting)
} else {
self.set_mode(RadioMode::Stdby).await?;
if self.explicit_header {
self.set_explicit_header_mode().await?;
} else {
self.set_implicit_header_mode().await?;
}
self.write_register(Register::RegIrqFlags.addr(), 0).await?;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegFifoAddrPtr.addr(), 0).await?;
self.write_register(Register::RegPayloadLength.addr(), 0).await?;
for byte in buffer.iter() {
self.write_register(Register::RegFifo.addr(), *byte).await?;
}
self.write_register(Register::RegPayloadLength.addr(), buffer.len() as u8)
.await?;
self.set_mode(RadioMode::Tx).await?;
Ok(())
}
}
pub async fn packet_ready(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
2022-06-12 22:15:44 +02:00
Ok(self.read_register(Register::RegIrqFlags.addr()).await?.get_bit(6))
}
pub async fn irq_flags_mask(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegIrqFlagsMask.addr()).await? as u8)
}
pub async fn irq_flags(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegIrqFlags.addr()).await? as u8)
}
pub async fn read_packet_size(&mut self) -> Result<usize, Error<E, CS::Error, RESET::Error>> {
let size = self.read_register(Register::RegRxNbBytes.addr()).await?;
Ok(size as usize)
}
/// Returns the contents of the fifo as a fixed 255 u8 array. This should only be called is there is a
/// new packet ready to be read.
2022-06-12 22:15:44 +02:00
pub async fn read_packet(&mut self, buffer: &mut [u8]) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.clear_irq().await?;
let size = self.read_register(Register::RegRxNbBytes.addr()).await?;
assert!(size as usize <= buffer.len());
2022-06-12 22:15:44 +02:00
let fifo_addr = self.read_register(Register::RegFifoRxCurrentAddr.addr()).await?;
self.write_register(Register::RegFifoAddrPtr.addr(), fifo_addr).await?;
for i in 0..size {
let byte = self.read_register(Register::RegFifo.addr()).await?;
buffer[i as usize] = byte;
}
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegFifoAddrPtr.addr(), 0).await?;
Ok(())
}
/// Returns true if the radio is currently transmitting a packet.
pub async fn transmitting(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
2022-06-12 22:15:44 +02:00
if (self.read_register(Register::RegOpMode.addr()).await?) & RadioMode::Tx.addr() == RadioMode::Tx.addr() {
Ok(true)
} else {
2022-06-12 22:15:44 +02:00
if (self.read_register(Register::RegIrqFlags.addr()).await? & IRQ::IrqTxDoneMask.addr()) == 1 {
self.write_register(Register::RegIrqFlags.addr(), IRQ::IrqTxDoneMask.addr())
.await?;
}
Ok(false)
}
}
/// Clears the radio's IRQ registers.
pub async fn clear_irq(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
let irq_flags = self.read_register(Register::RegIrqFlags.addr()).await?;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegIrqFlags.addr(), 0xFF).await?;
Ok(irq_flags)
}
/// Sets the transmit power and pin. Levels can range from 0-14 when the output
/// pin = 0(RFO), and form 0-20 when output pin = 1(PaBoost). Power is in dB.
/// Default value is `17`.
pub async fn set_tx_power(
&mut self,
mut level: i32,
output_pin: u8,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if PaConfig::PaOutputRfoPin.addr() == output_pin {
// RFO
if level < 0 {
level = 0;
} else if level > 14 {
level = 14;
}
self.write_register(Register::RegPaConfig.addr(), (0x70 | level) as u8)
.await
} else {
// PA BOOST
if level > 17 {
if level > 20 {
level = 20;
}
// subtract 3 from level, so 18 - 20 maps to 15 - 17
level -= 3;
// High Power +20 dBm Operation (Semtech SX1276/77/78/79 5.4.3.)
self.write_register(Register::RegPaDac.addr(), 0x87).await?;
self.set_ocp(140).await?;
} else {
if level < 2 {
level = 2;
}
//Default value PA_HF/LF or +17dBm
self.write_register(Register::RegPaDac.addr(), 0x84).await?;
self.set_ocp(100).await?;
}
level -= 2;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegPaConfig.addr(), PaConfig::PaBoost.addr() | level as u8)
.await
}
}
pub async fn get_modem_stat(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegModemStat.addr()).await? as u8)
}
/// Sets the over current protection on the radio(mA).
pub async fn set_ocp(&mut self, ma: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let mut ocp_trim: u8 = 27;
if ma <= 120 {
ocp_trim = (ma - 45) / 5;
} else if ma <= 240 {
ocp_trim = (ma + 30) / 10;
}
self.write_register(Register::RegOcp.addr(), 0x20 | (0x1F & ocp_trim))
.await
}
/// Sets the state of the radio. Default mode after initiation is `Standby`.
2022-06-12 22:15:44 +02:00
pub async fn set_mode(&mut self, mode: RadioMode) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if self.explicit_header {
self.set_explicit_header_mode().await?;
} else {
self.set_implicit_header_mode().await?;
}
self.write_register(
Register::RegOpMode.addr(),
RadioMode::LongRangeMode.addr() | mode.addr(),
)
.await?;
self.mode = mode;
Ok(())
}
pub async fn reset_payload_length(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegPayloadLength.addr(), 0xFF).await
}
/// Sets the frequency of the radio. Values are in megahertz.
/// I.E. 915 MHz must be used for North America. Check regulation for your area.
2022-06-12 22:15:44 +02:00
pub async fn set_frequency(&mut self, freq: u32) -> Result<(), Error<E, CS::Error, RESET::Error>> {
const FREQ_STEP: f64 = 61.03515625;
// calculate register values
let frf = (freq as f64 / FREQ_STEP) as u32;
// write registers
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegFrfMsb.addr(), ((frf & 0x00FF_0000) >> 16) as u8)
.await?;
self.write_register(Register::RegFrfMid.addr(), ((frf & 0x0000_FF00) >> 8) as u8)
.await?;
self.write_register(Register::RegFrfLsb.addr(), (frf & 0x0000_00FF) as u8)
.await
}
/// Sets the radio to use an explicit header. Default state is `ON`.
async fn set_explicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0xfe)
.await?;
self.explicit_header = true;
Ok(())
}
/// Sets the radio to use an implicit header. Default state is `OFF`.
async fn set_implicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0x01)
.await?;
self.explicit_header = false;
Ok(())
}
/// Sets the spreading factor of the radio. Supported values are between 6 and 12.
/// If a spreading factor of 6 is set, implicit header mode must be used to transmit
/// and receive packets. Default value is `7`.
2022-06-12 22:15:44 +02:00
pub async fn set_spreading_factor(&mut self, mut sf: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if sf < 6 {
sf = 6;
} else if sf > 12 {
sf = 12;
}
if sf == 6 {
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegDetectionOptimize.addr(), 0xc5).await?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0c)
.await?;
} else {
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegDetectionOptimize.addr(), 0xc3).await?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0a)
.await?;
}
let modem_config_2 = self.read_register(Register::RegModemConfig2.addr()).await?;
self.write_register(
Register::RegModemConfig2.addr(),
(modem_config_2 & 0x0f) | ((sf << 4) & 0xf0),
)
.await?;
self.set_ldo_flag().await?;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegSymbTimeoutLsb.addr(), 0x05).await?;
Ok(())
}
2022-06-12 22:15:44 +02:00
pub async fn set_tcxo(&mut self, external: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if external {
self.write_register(Register::RegTcxo.addr(), 0x10).await
} else {
self.write_register(Register::RegTcxo.addr(), 0x00).await
}
}
/// Sets the signal bandwidth of the radio. Supported values are: `7800 Hz`, `10400 Hz`,
/// `15600 Hz`, `20800 Hz`, `31250 Hz`,`41700 Hz` ,`62500 Hz`,`125000 Hz` and `250000 Hz`
/// Default value is `125000 Hz`
2022-06-12 22:15:44 +02:00
pub async fn set_signal_bandwidth(&mut self, sbw: i64) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let bw: i64 = match sbw {
7_800 => 0,
10_400 => 1,
15_600 => 2,
20_800 => 3,
31_250 => 4,
41_700 => 5,
62_500 => 6,
125_000 => 7,
250_000 => 8,
_ => 9,
};
let modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(
Register::RegModemConfig1.addr(),
(modem_config_1 & 0x0f) | ((bw << 4) as u8),
)
.await?;
self.set_ldo_flag().await?;
Ok(())
}
/// Sets the coding rate of the radio with the numerator fixed at 4. Supported values
/// are between `5` and `8`, these correspond to coding rates of `4/5` and `4/8`.
/// Default value is `5`.
2022-06-12 22:15:44 +02:00
pub async fn set_coding_rate_4(&mut self, mut denominator: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if denominator < 5 {
denominator = 5;
} else if denominator > 8 {
denominator = 8;
}
let cr = denominator - 4;
let modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegModemConfig1.addr(), (modem_config_1 & 0xf1) | (cr << 1))
.await
}
/// Sets the preamble length of the radio. Values are between 6 and 65535.
/// Default value is `8`.
2022-06-12 22:15:44 +02:00
pub async fn set_preamble_length(&mut self, length: i64) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPreambleMsb.addr(), (length >> 8) as u8)
.await?;
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegPreambleLsb.addr(), length as u8).await
}
/// Enables are disables the radio's CRC check. Default value is `false`.
pub async fn set_crc(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let modem_config_2 = self.read_register(Register::RegModemConfig2.addr()).await?;
if value {
self.write_register(Register::RegModemConfig2.addr(), modem_config_2 | 0x04)
.await
} else {
self.write_register(Register::RegModemConfig2.addr(), modem_config_2 & 0xfb)
.await
}
}
/// Inverts the radio's IQ signals. Default value is `false`.
2022-06-12 22:15:44 +02:00
pub async fn set_invert_iq(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if value {
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegInvertiq.addr(), 0x66).await?;
self.write_register(Register::RegInvertiq2.addr(), 0x19).await
} else {
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegInvertiq.addr(), 0x27).await?;
self.write_register(Register::RegInvertiq2.addr(), 0x1d).await
}
}
/// Returns the spreading factor of the radio.
pub async fn get_spreading_factor(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegModemConfig2.addr()).await? >> 4)
}
/// Returns the signal bandwidth of the radio.
pub async fn get_signal_bandwidth(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
let bw = self.read_register(Register::RegModemConfig1.addr()).await? >> 4;
let bw = match bw {
0 => 7_800,
1 => 10_400,
2 => 15_600,
3 => 20_800,
4 => 31_250,
5 => 41_700,
6 => 62_500,
7 => 125_000,
8 => 250_000,
9 => 500_000,
_ => -1,
};
Ok(bw)
}
/// Returns the RSSI of the last received packet.
pub async fn get_packet_rssi(&mut self) -> Result<i32, Error<E, CS::Error, RESET::Error>> {
Ok(i32::from(self.read_register(Register::RegPktRssiValue.addr()).await?) - 157)
}
/// Returns the signal to noise radio of the the last received packet.
pub async fn get_packet_snr(&mut self) -> Result<f64, Error<E, CS::Error, RESET::Error>> {
2022-06-12 22:15:44 +02:00
Ok(f64::from(self.read_register(Register::RegPktSnrValue.addr()).await?))
}
/// Returns the frequency error of the last received packet in Hz.
2022-06-12 22:15:44 +02:00
pub async fn get_packet_frequency_error(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
let mut freq_error: i32;
freq_error = i32::from(self.read_register(Register::RegFreqErrorMsb.addr()).await? & 0x7);
freq_error <<= 8i64;
freq_error += i32::from(self.read_register(Register::RegFreqErrorMid.addr()).await?);
freq_error <<= 8i64;
freq_error += i32::from(self.read_register(Register::RegFreqErrorLsb.addr()).await?);
let f_xtal = 32_000_000; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
let f_error = ((f64::from(freq_error) * (1i64 << 24) as f64) / f64::from(f_xtal))
* (self.get_signal_bandwidth().await? as f64 / 500_000.0f64); // p. 37
Ok(f_error as i64)
}
async fn set_ldo_flag(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let sw = self.get_signal_bandwidth().await?;
// Section 4.1.1.5
let symbol_duration = 1000 / (sw / ((1_i64) << self.get_spreading_factor().await?));
// Section 4.1.1.6
let ldo_on = symbol_duration > 16;
let mut config_3 = self.read_register(Register::RegModemConfig3.addr()).await?;
config_3.set_bit(3, ldo_on);
//config_3.set_bit(2, true);
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegModemConfig3.addr(), config_3).await
}
async fn read_register(&mut self, reg: u8) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
let mut buffer = [reg & 0x7f, 0];
self.cs.set_low().map_err(CS)?;
2022-06-12 22:15:44 +02:00
let _ = self.spi.transfer(&mut buffer, &[reg & 0x7f, 0]).await.map_err(SPI)?;
self.cs.set_high().map_err(CS)?;
Ok(buffer[1])
}
2022-06-12 22:15:44 +02:00
async fn write_register(&mut self, reg: u8, byte: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.cs.set_low().map_err(CS)?;
let buffer = [reg | 0x80, byte];
2021-12-02 11:38:43 +01:00
self.spi.write(&buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(CS)?;
Ok(())
}
pub async fn put_in_fsk_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
// Put in FSK mode
let mut op_mode = 0;
op_mode
.set_bit(7, false) // FSK mode
.set_bits(5..6, 0x00) // FSK modulation
.set_bit(3, false) //Low freq registers
.set_bits(0..2, 0b011); // Mode
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegOpMode as u8, op_mode).await
}
pub async fn set_fsk_pa_ramp(
&mut self,
modulation_shaping: FskDataModulationShaping,
ramp: FskRampUpRamDown,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let mut pa_ramp = 0;
pa_ramp
.set_bits(5..6, modulation_shaping as u8)
.set_bits(0..3, ramp as u8);
2022-06-12 22:15:44 +02:00
self.write_register(Register::RegPaRamp as u8, pa_ramp).await
}
pub async fn set_lora_pa_ramp(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPaRamp as u8, 0b1000).await
}
pub async fn set_lora_sync_word(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegSyncWord as u8, 0x34).await
}
}
/// Modes of the radio and their corresponding register values.
#[derive(Clone, Copy)]
pub enum RadioMode {
LongRangeMode = 0x80,
Sleep = 0x00,
Stdby = 0x01,
Tx = 0x03,
RxContinuous = 0x05,
RxSingle = 0x06,
}
impl RadioMode {
/// Returns the address of the mode.
pub fn addr(self) -> u8 {
self as u8
}
}