embassy/embassy-nrf/src/spim.rs

402 lines
12 KiB
Rust
Raw Normal View History

#![macro_use]
2021-01-18 13:22:55 +00:00
use core::future::Future;
use core::marker::PhantomData;
2021-01-18 13:22:55 +00:00
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
2021-04-14 14:37:10 +00:00
use embassy::interrupt::InterruptExt;
2021-03-18 00:27:30 +00:00
use embassy::traits;
2021-04-14 17:59:52 +00:00
use embassy::util::{AtomicWaker, Unborrow};
2021-03-21 21:09:06 +00:00
use embassy_extras::unborrow;
2021-01-18 13:22:55 +00:00
use futures::future::poll_fn;
2021-07-20 13:52:03 +00:00
use traits::spi::{ Spi, Read, Write, FullDuplex};
2021-01-18 13:22:55 +00:00
use crate::gpio;
2021-03-27 02:20:58 +00:00
use crate::gpio::sealed::Pin as _;
use crate::gpio::{OptionalPin, Pin as GpioPin};
2021-05-17 09:48:58 +00:00
use crate::interrupt::Interrupt;
use crate::{pac, util::slice_in_ram_or};
2021-01-18 13:22:55 +00:00
pub use embedded_hal::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3};
pub use pac::spim0::frequency::FREQUENCY_A as Frequency;
2021-01-18 13:22:55 +00:00
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
TxBufferTooLong,
RxBufferTooLong,
/// EasyDMA can only read from data memory, read only buffers in flash will fail.
DMABufferNotInDataMemory,
}
pub struct Spim<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
2021-01-18 13:22:55 +00:00
}
#[non_exhaustive]
2021-01-18 13:22:55 +00:00
pub struct Config {
pub frequency: Frequency,
pub mode: Mode,
pub orc: u8,
}
impl Default for Config {
fn default() -> Self {
Self {
frequency: Frequency::M1,
mode: MODE_0,
orc: 0x00,
}
}
}
impl<'d, T: Instance> Spim<'d, T> {
pub fn new(
2021-05-17 10:23:04 +00:00
_spim: impl Unborrow<Target = T> + 'd,
2021-04-14 17:59:52 +00:00
irq: impl Unborrow<Target = T::Interrupt> + 'd,
sck: impl Unborrow<Target = impl GpioPin> + 'd,
miso: impl Unborrow<Target = impl OptionalPin> + 'd,
mosi: impl Unborrow<Target = impl OptionalPin> + 'd,
config: Config,
) -> Self {
2021-05-17 10:23:04 +00:00
unborrow!(irq, sck, miso, mosi);
2021-04-14 14:37:10 +00:00
let r = T::regs();
2021-01-18 13:22:55 +00:00
// Configure pins
sck.conf().write(|w| w.dir().output().drive().h0h1());
2021-03-27 02:20:58 +00:00
if let Some(mosi) = mosi.pin_mut() {
mosi.conf().write(|w| w.dir().output().drive().h0h1());
}
if let Some(miso) = miso.pin_mut() {
miso.conf().write(|w| w.input().connect().drive().h0h1());
}
match config.mode.polarity {
Polarity::IdleHigh => {
sck.set_high();
2021-03-27 02:20:58 +00:00
if let Some(mosi) = mosi.pin_mut() {
mosi.set_high();
}
}
Polarity::IdleLow => {
sck.set_low();
2021-03-27 02:20:58 +00:00
if let Some(mosi) = mosi.pin_mut() {
mosi.set_low();
}
}
}
2021-01-18 13:22:55 +00:00
// Select pins.
2021-03-27 02:20:58 +00:00
// Note: OptionalPin reports 'disabled' for psel_bits when no pin was selected.
r.psel.sck.write(|w| unsafe { w.bits(sck.psel_bits()) });
r.psel.mosi.write(|w| unsafe { w.bits(mosi.psel_bits()) });
r.psel.miso.write(|w| unsafe { w.bits(miso.psel_bits()) });
2021-01-18 13:22:55 +00:00
// Enable SPIM instance.
r.enable.write(|w| w.enable().enabled());
// Configure mode.
let mode = config.mode;
r.config.write(|w| {
2021-06-03 09:38:25 +00:00
match mode {
MODE_0 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().leading();
}
MODE_1 => {
w.order().msb_first();
w.cpol().active_high();
w.cpha().trailing();
}
MODE_2 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().leading();
}
MODE_3 => {
w.order().msb_first();
w.cpol().active_low();
w.cpha().trailing();
}
2021-01-18 13:22:55 +00:00
}
2021-06-03 09:38:25 +00:00
2021-01-18 13:22:55 +00:00
w
});
// Configure frequency.
let frequency = config.frequency;
r.frequency.write(|w| w.frequency().variant(frequency));
// Set over-read character
let orc = config.orc;
r.orc.write(|w|
// The ORC field is 8 bits long, so any u8 is a valid value to write.
unsafe { w.orc().bits(orc) });
// Disable all events interrupts
r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
2021-04-14 14:37:10 +00:00
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
2021-01-18 13:22:55 +00:00
Self {
phantom: PhantomData,
2021-01-18 13:22:55 +00:00
}
}
2021-04-14 14:37:10 +00:00
fn on_interrupt(_: *mut ()) {
let r = T::regs();
let s = T::state();
if r.events_end.read().bits() != 0 {
s.end_waker.wake();
r.intenclr.write(|w| w.end().clear());
}
}
2021-03-18 00:27:30 +00:00
}
impl<'d, T: Instance> Drop for Spim<'d, T> {
fn drop(&mut self) {
info!("spim drop");
// TODO check for abort, wait for xxxstopped
// disable!
let r = T::regs();
r.enable.write(|w| w.enable().disabled());
gpio::deconfigure_pin(r.psel.sck.read().bits());
gpio::deconfigure_pin(r.psel.miso.read().bits());
gpio::deconfigure_pin(r.psel.mosi.read().bits());
info!("spim drop: done");
}
}
2021-07-20 13:52:03 +00:00
impl<'d, T: Instance> Spi<u8> for Spim<'d, T> {
2021-03-18 00:27:30 +00:00
type Error = Error;
2021-07-20 13:52:03 +00:00
}
2021-03-18 00:27:30 +00:00
2021-07-20 13:52:03 +00:00
impl<'d, T: Instance> Read<u8> for Spim<'d, T> {
2021-03-18 00:27:30 +00:00
#[rustfmt::skip]
2021-07-20 13:52:03 +00:00
type ReadFuture<'a> where Self: 'a = impl Future<Output=Result<(), Self::Error>> + 'a;
2021-03-18 00:27:30 +00:00
2021-04-14 14:37:10 +00:00
fn read<'a>(&'a mut self, data: &'a mut [u8]) -> Self::ReadFuture<'a> {
2021-03-20 02:38:21 +00:00
self.read_write(data, &[])
2021-03-18 00:27:30 +00:00
}
2021-07-20 13:52:03 +00:00
}
impl<'d, T: Instance> Write<u8> for Spim<'d, T> {
#[rustfmt::skip]
type WriteFuture<'a> where Self: 'a = impl Future<Output=Result<(), Self::Error>> + 'a;
2021-04-14 14:37:10 +00:00
fn write<'a>(&'a mut self, data: &'a [u8]) -> Self::WriteFuture<'a> {
2021-03-20 02:38:21 +00:00
self.read_write(&mut [], data)
2021-03-18 00:27:30 +00:00
}
2021-07-20 13:52:03 +00:00
}
impl<'d, T: Instance> FullDuplex<u8> for Spim<'d, T> {
#[rustfmt::skip]
type WriteReadFuture<'a> where Self: 'a = impl Future<Output = Result<(), Self::Error>> + 'a;
2021-01-18 13:22:55 +00:00
2021-04-14 14:37:10 +00:00
fn read_write<'a>(&'a mut self, rx: &'a mut [u8], tx: &'a [u8]) -> Self::WriteReadFuture<'a> {
2021-01-18 13:22:55 +00:00
async move {
2021-03-18 00:27:30 +00:00
slice_in_ram_or(tx, Error::DMABufferNotInDataMemory)?;
// NOTE: RAM slice check for rx is not necessary, as a mutable
// slice can only be built from data located in RAM.
2021-01-18 13:22:55 +00:00
2021-03-20 02:38:21 +00:00
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started.
compiler_fence(Ordering::SeqCst);
2021-04-14 14:37:10 +00:00
let r = T::regs();
let s = T::state();
2021-03-20 02:38:21 +00:00
// Set up the DMA write.
r.txd
.ptr
.write(|w| unsafe { w.ptr().bits(tx.as_ptr() as u32) });
r.txd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(tx.len() as _) });
// Set up the DMA read.
r.rxd
.ptr
.write(|w| unsafe { w.ptr().bits(rx.as_mut_ptr() as u32) });
r.rxd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(rx.len() as _) });
// Reset and enable the event
r.events_end.reset();
r.intenset.write(|w| w.end().set());
// Start SPI transaction.
r.tasks_start.write(|w| unsafe { w.bits(1) });
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// after all possible DMA actions have completed.
compiler_fence(Ordering::SeqCst);
2021-01-18 13:22:55 +00:00
// Wait for 'end' event.
poll_fn(|cx| {
2021-04-14 14:37:10 +00:00
s.end_waker.register(cx.waker());
2021-03-20 02:38:21 +00:00
if r.events_end.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
2021-01-18 13:22:55 +00:00
})
.await;
Ok(())
}
}
}
// Blocking functions are provided by implementing `embedded_hal` traits.
//
// Code could be shared between traits to reduce code size.
impl<'d, T: Instance> embedded_hal::blocking::spi::Transfer<u8> for Spim<'d, T> {
type Error = Error;
fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> {
slice_in_ram_or(words, Error::DMABufferNotInDataMemory)?;
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started.
compiler_fence(Ordering::SeqCst);
let r = T::regs();
// Set up the DMA write.
r.txd
.ptr
.write(|w| unsafe { w.ptr().bits(words.as_ptr() as u32) });
r.txd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(words.len() as _) });
// Set up the DMA read.
r.rxd
.ptr
.write(|w| unsafe { w.ptr().bits(words.as_mut_ptr() as u32) });
r.rxd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(words.len() as _) });
2021-05-05 17:25:14 +00:00
// Disable the end event since we are busy-polling.
r.events_end.reset();
// Start SPI transaction.
r.tasks_start.write(|w| unsafe { w.bits(1) });
2021-05-05 17:25:14 +00:00
// Wait for 'end' event.
while r.events_end.read().bits() == 0 {}
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// after all possible DMA actions have completed.
compiler_fence(Ordering::SeqCst);
Ok(words)
}
}
impl<'d, T: Instance> embedded_hal::blocking::spi::Write<u8> for Spim<'d, T> {
type Error = Error;
fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> {
slice_in_ram_or(words, Error::DMABufferNotInDataMemory)?;
2021-05-17 09:48:58 +00:00
let recv: &mut [u8] = &mut [];
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started.
compiler_fence(Ordering::SeqCst);
let r = T::regs();
// Set up the DMA write.
r.txd
.ptr
.write(|w| unsafe { w.ptr().bits(words.as_ptr() as u32) });
r.txd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(words.len() as _) });
// Set up the DMA read.
r.rxd
.ptr
.write(|w| unsafe { w.ptr().bits(recv.as_mut_ptr() as u32) });
r.rxd
.maxcnt
.write(|w| unsafe { w.maxcnt().bits(recv.len() as _) });
// Disable the end event since we are busy-polling.
r.events_end.reset();
// Start SPI transaction.
r.tasks_start.write(|w| unsafe { w.bits(1) });
// Wait for 'end' event.
while r.events_end.read().bits() == 0 {}
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// after all possible DMA actions have completed.
compiler_fence(Ordering::SeqCst);
Ok(())
}
}
pub(crate) mod sealed {
2021-03-18 19:56:10 +00:00
use super::*;
2021-04-14 14:37:10 +00:00
pub struct State {
pub end_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
end_waker: AtomicWaker::new(),
}
}
}
2021-03-18 19:56:10 +00:00
pub trait Instance {
2021-04-14 14:37:10 +00:00
fn regs() -> &'static pac::spim0::RegisterBlock;
fn state() -> &'static State;
2021-03-18 19:56:10 +00:00
}
2021-01-18 13:22:55 +00:00
}
pub trait Instance: Unborrow<Target = Self> + sealed::Instance + 'static {
2021-01-18 13:22:55 +00:00
type Interrupt: Interrupt;
}
macro_rules! impl_spim {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::spim::sealed::Instance for peripherals::$type {
2021-04-14 14:37:10 +00:00
fn regs() -> &'static pac::spim0::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
2021-03-18 19:56:10 +00:00
}
fn state() -> &'static crate::spim::sealed::State {
static STATE: crate::spim::sealed::State = crate::spim::sealed::State::new();
2021-04-14 14:37:10 +00:00
&STATE
}
2021-03-18 19:56:10 +00:00
}
impl crate::spim::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
2021-03-18 19:56:10 +00:00
}
};
2021-01-18 13:22:55 +00:00
}