embassy/embassy-nrf/src/qspi.rs

666 lines
20 KiB
Rust
Raw Normal View History

2023-01-31 23:48:33 +00:00
//! Quad Serial Peripheral Interface (QSPI) flash driver.
#![macro_use]
use core::future::poll_fn;
use core::marker::PhantomData;
use core::ptr;
2021-02-28 21:05:37 +00:00
use core::task::Poll;
2022-06-12 20:15:44 +00:00
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::{into_ref, PeripheralRef};
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
2021-03-07 23:15:40 +00:00
use crate::gpio::{self, Pin as GpioPin};
use crate::interrupt::{self, Interrupt, InterruptExt};
2022-06-12 20:15:44 +00:00
pub use crate::pac::qspi::ifconfig0::{
ADDRMODE_A as AddressMode, PPSIZE_A as WritePageSize, READOC_A as ReadOpcode, WRITEOC_A as WriteOpcode,
};
pub use crate::pac::qspi::ifconfig1::SPIMODE_A as SpiMode;
use crate::Peripheral;
2020-09-22 16:03:43 +00:00
2023-01-31 23:48:33 +00:00
/// Deep power-down config.
2020-11-27 17:42:59 +00:00
pub struct DeepPowerDownConfig {
/// Time required for entering DPM, in units of 16us
2020-11-27 17:42:59 +00:00
pub enter_time: u16,
/// Time required for exiting DPM, in units of 16us
2020-11-27 17:42:59 +00:00
pub exit_time: u16,
}
2023-01-31 23:48:33 +00:00
/// QSPI bus frequency.
pub enum Frequency {
2023-01-31 23:48:33 +00:00
/// 32 Mhz
M32 = 0,
2023-01-31 23:48:33 +00:00
/// 16 Mhz
M16 = 1,
2023-01-31 23:48:33 +00:00
/// 10.7 Mhz
M10_7 = 2,
2023-01-31 23:48:33 +00:00
/// 8 Mhz
M8 = 3,
2023-01-31 23:48:33 +00:00
/// 6.4 Mhz
M6_4 = 4,
2023-01-31 23:48:33 +00:00
/// 5.3 Mhz
M5_3 = 5,
2023-01-31 23:48:33 +00:00
/// 4.6 Mhz
M4_6 = 6,
2023-01-31 23:48:33 +00:00
/// 4 Mhz
M4 = 7,
2023-01-31 23:48:33 +00:00
/// 3.6 Mhz
M3_6 = 8,
2023-01-31 23:48:33 +00:00
/// 3.2 Mhz
M3_2 = 9,
2023-01-31 23:48:33 +00:00
/// 2.9 Mhz
M2_9 = 10,
2023-01-31 23:48:33 +00:00
/// 2.7 Mhz
M2_7 = 11,
2023-01-31 23:48:33 +00:00
/// 2.5 Mhz
M2_5 = 12,
2023-01-31 23:48:33 +00:00
/// 2.3 Mhz
M2_3 = 13,
2023-01-31 23:48:33 +00:00
/// 2.1 Mhz
M2_1 = 14,
2023-01-31 23:48:33 +00:00
/// 2 Mhz
M2 = 15,
}
2023-01-31 23:48:33 +00:00
/// QSPI config.
2021-03-28 22:55:05 +00:00
#[non_exhaustive]
2020-09-22 16:03:43 +00:00
pub struct Config {
2023-01-31 23:48:33 +00:00
/// XIP offset.
2020-09-22 16:03:43 +00:00
pub xip_offset: u32,
2023-01-31 23:48:33 +00:00
/// Opcode used for read operations.
2020-09-22 16:03:43 +00:00
pub read_opcode: ReadOpcode,
2023-01-31 23:48:33 +00:00
/// Opcode used for write operations.
2020-09-22 16:03:43 +00:00
pub write_opcode: WriteOpcode,
2023-01-31 23:48:33 +00:00
/// Page size for write operations.
2020-09-22 16:03:43 +00:00
pub write_page_size: WritePageSize,
2023-01-31 23:48:33 +00:00
/// Configuration for deep power down. If None, deep power down is disabled.
2020-11-27 17:42:59 +00:00
pub deep_power_down: Option<DeepPowerDownConfig>,
2023-01-31 23:48:33 +00:00
/// QSPI bus frequency.
pub frequency: Frequency,
/// Value is specified in number of 16 MHz periods (62.5 ns)
pub sck_delay: u8,
/// Whether data is captured on the clock rising edge and data is output on a falling edge (MODE0) or vice-versa (MODE3)
pub spi_mode: SpiMode,
2023-01-31 23:48:33 +00:00
/// Addressing mode (24-bit or 32-bit)
pub address_mode: AddressMode,
/// Flash memory capacity in bytes. This is the value reported by the `embedded-storage` traits.
pub capacity: u32,
2020-09-22 16:03:43 +00:00
}
2021-03-28 22:55:05 +00:00
impl Default for Config {
fn default() -> Self {
Self {
read_opcode: ReadOpcode::READ4IO,
write_opcode: WriteOpcode::PP4IO,
xip_offset: 0,
write_page_size: WritePageSize::_256BYTES,
deep_power_down: None,
frequency: Frequency::M8,
sck_delay: 80,
spi_mode: SpiMode::MODE0,
address_mode: AddressMode::_24BIT,
capacity: 0,
2021-03-28 22:55:05 +00:00
}
}
}
2023-01-31 23:48:33 +00:00
/// Error
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
2023-01-31 23:48:33 +00:00
/// Operation address was out of bounds.
OutOfBounds,
// TODO add "not in data memory" error and check for it
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
if r.events_ready.read().bits() != 0 {
s.waker.wake();
r.intenclr.write(|w| w.ready().clear());
}
}
}
2023-01-31 23:48:33 +00:00
/// QSPI flash driver.
pub struct Qspi<'d, T: Instance> {
_peri: PeripheralRef<'d, T>,
dpm_enabled: bool,
capacity: u32,
2021-02-28 21:05:37 +00:00
}
impl<'d, T: Instance> Qspi<'d, T> {
2023-01-31 23:48:33 +00:00
/// Create a new QSPI driver.
pub fn new(
qspi: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
csn: impl Peripheral<P = impl GpioPin> + 'd,
io0: impl Peripheral<P = impl GpioPin> + 'd,
io1: impl Peripheral<P = impl GpioPin> + 'd,
io2: impl Peripheral<P = impl GpioPin> + 'd,
io3: impl Peripheral<P = impl GpioPin> + 'd,
2021-03-21 19:54:09 +00:00
config: Config,
) -> Self {
into_ref!(qspi, sck, csn, io0, io1, io2, io3);
2021-03-21 19:54:09 +00:00
2021-04-14 15:00:28 +00:00
let r = T::regs();
2021-03-21 19:54:09 +00:00
2023-02-23 21:36:10 +00:00
macro_rules! config_pin {
($pin:ident) => {
$pin.set_high();
$pin.conf().write(|w| {
w.dir().output();
w.drive().h0h1();
#[cfg(feature = "_nrf5340-s")]
w.mcusel().peripheral();
w
});
r.psel.$pin.write(|w| unsafe { w.bits($pin.psel_bits()) });
};
}
config_pin!(sck);
config_pin!(csn);
config_pin!(io0);
config_pin!(io1);
config_pin!(io2);
config_pin!(io3);
2020-09-22 16:03:43 +00:00
r.ifconfig0.write(|w| {
w.addrmode().variant(config.address_mode);
w.dpmenable().bit(config.deep_power_down.is_some());
w.ppsize().variant(config.write_page_size);
w.readoc().variant(config.read_opcode);
w.writeoc().variant(config.write_opcode);
2020-09-22 16:03:43 +00:00
w
});
2020-11-27 17:42:59 +00:00
if let Some(dpd) = &config.deep_power_down {
r.dpmdur.write(|w| unsafe {
w.enter().bits(dpd.enter_time);
w.exit().bits(dpd.exit_time);
2020-11-27 17:42:59 +00:00
w
})
}
r.ifconfig1.write(|w| unsafe {
w.sckdelay().bits(config.sck_delay);
w.dpmen().exit();
w.spimode().variant(config.spi_mode);
w.sckfreq().bits(config.frequency as u8);
w
});
r.xipoffset.write(|w| unsafe {
w.xipoffset().bits(config.xip_offset);
2020-09-22 16:03:43 +00:00
w
});
unsafe { T::Interrupt::steal() }.unpend();
unsafe { T::Interrupt::steal() }.enable();
2020-09-22 16:03:43 +00:00
// Enable it
2021-03-21 19:54:09 +00:00
r.enable.write(|w| w.enable().enabled());
2020-09-22 16:03:43 +00:00
let res = Self {
_peri: qspi,
dpm_enabled: config.deep_power_down.is_some(),
capacity: config.capacity,
};
2021-03-21 19:54:09 +00:00
r.events_ready.reset();
r.intenset.write(|w| w.ready().set());
2021-03-21 19:54:09 +00:00
r.tasks_activate.write(|w| w.tasks_activate().bit(true));
2020-09-22 16:03:43 +00:00
Self::blocking_wait_ready();
2021-04-14 15:00:28 +00:00
res
2020-09-22 16:03:43 +00:00
}
2023-01-31 23:48:33 +00:00
/// Do a custom QSPI instruction.
2022-06-12 20:15:44 +00:00
pub async fn custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> {
let ondrop = OnDrop::new(Self::blocking_wait_ready);
2020-09-22 16:03:43 +00:00
let len = core::cmp::max(req.len(), resp.len()) as u8;
self.custom_instruction_start(opcode, req, len)?;
self.wait_ready().await;
self.custom_instruction_finish(resp)?;
ondrop.defuse();
Ok(())
}
2023-01-31 23:48:33 +00:00
/// Do a custom QSPI instruction, blocking version.
2022-06-12 20:15:44 +00:00
pub fn blocking_custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> {
let len = core::cmp::max(req.len(), resp.len()) as u8;
self.custom_instruction_start(opcode, req, len)?;
Self::blocking_wait_ready();
self.custom_instruction_finish(resp)?;
Ok(())
}
fn custom_instruction_start(&mut self, opcode: u8, req: &[u8], len: u8) -> Result<(), Error> {
2021-02-14 00:41:36 +00:00
assert!(req.len() <= 8);
2020-09-22 16:03:43 +00:00
2021-02-14 00:41:36 +00:00
let mut dat0: u32 = 0;
let mut dat1: u32 = 0;
2020-09-22 16:03:43 +00:00
2021-02-14 00:41:36 +00:00
for i in 0..4 {
if i < req.len() {
dat0 |= (req[i] as u32) << (i * 8);
2020-09-22 16:03:43 +00:00
}
2021-02-14 00:41:36 +00:00
}
for i in 0..4 {
if i + 4 < req.len() {
dat1 |= (req[i + 4] as u32) << (i * 8);
2020-09-22 16:03:43 +00:00
}
2021-02-14 00:41:36 +00:00
}
2020-09-22 16:03:43 +00:00
2021-04-14 15:00:28 +00:00
let r = T::regs();
2021-03-21 19:54:09 +00:00
r.cinstrdat0.write(|w| unsafe { w.bits(dat0) });
r.cinstrdat1.write(|w| unsafe { w.bits(dat1) });
r.events_ready.reset();
r.intenset.write(|w| w.ready().set());
r.cinstrconf.write(|w| {
let w = unsafe { w.opcode().bits(opcode) };
let w = unsafe { w.length().bits(len + 1) };
let w = w.lio2().bit(true);
let w = w.lio3().bit(true);
let w = w.wipwait().bit(true);
let w = w.wren().bit(true);
let w = w.lfen().bit(false);
let w = w.lfstop().bit(false);
w
2021-02-14 00:41:36 +00:00
});
Ok(())
}
2020-09-22 16:03:43 +00:00
fn custom_instruction_finish(&mut self, resp: &mut [u8]) -> Result<(), Error> {
2021-04-14 15:00:28 +00:00
let r = T::regs();
2021-03-21 19:54:09 +00:00
let dat0 = r.cinstrdat0.read().bits();
let dat1 = r.cinstrdat1.read().bits();
for i in 0..4 {
if i < resp.len() {
resp[i] = (dat0 >> (i * 8)) as u8;
2020-09-22 16:03:43 +00:00
}
2021-03-21 19:54:09 +00:00
}
for i in 0..4 {
if i + 4 < resp.len() {
resp[i] = (dat1 >> (i * 8)) as u8;
2020-09-22 16:03:43 +00:00
}
2021-03-21 19:54:09 +00:00
}
2021-02-14 00:41:36 +00:00
Ok(())
2020-09-22 16:03:43 +00:00
}
2021-02-28 21:05:37 +00:00
2021-04-14 15:00:28 +00:00
async fn wait_ready(&mut self) {
2021-02-28 21:05:37 +00:00
poll_fn(move |cx| {
2021-04-14 15:00:28 +00:00
let r = T::regs();
let s = T::state();
s.waker.register(cx.waker());
2021-03-21 19:54:09 +00:00
if r.events_ready.read().bits() != 0 {
return Poll::Ready(());
}
Poll::Pending
2021-02-28 21:05:37 +00:00
})
2021-03-21 19:54:09 +00:00
.await
2021-02-28 21:05:37 +00:00
}
fn blocking_wait_ready() {
loop {
let r = T::regs();
if r.events_ready.read().bits() != 0 {
break;
}
}
}
fn start_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
// TODO: Return these as errors instead.
assert_eq!(data.as_ptr() as u32 % 4, 0);
assert_eq!(data.len() as u32 % 4, 0);
assert_eq!(address % 4, 0);
let r = T::regs();
r.read.src.write(|w| unsafe { w.src().bits(address) });
2022-06-12 20:15:44 +00:00
r.read.dst.write(|w| unsafe { w.dst().bits(data.as_ptr() as u32) });
r.read.cnt.write(|w| unsafe { w.cnt().bits(data.len() as u32) });
r.events_ready.reset();
r.intenset.write(|w| w.ready().set());
r.tasks_readstart.write(|w| w.tasks_readstart().bit(true));
Ok(())
}
fn start_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
// TODO: Return these as errors instead.
assert_eq!(data.as_ptr() as u32 % 4, 0);
assert_eq!(data.len() as u32 % 4, 0);
assert_eq!(address % 4, 0);
let r = T::regs();
2022-06-12 20:15:44 +00:00
r.write.src.write(|w| unsafe { w.src().bits(data.as_ptr() as u32) });
r.write.dst.write(|w| unsafe { w.dst().bits(address) });
2022-06-12 20:15:44 +00:00
r.write.cnt.write(|w| unsafe { w.cnt().bits(data.len() as u32) });
r.events_ready.reset();
r.intenset.write(|w| w.ready().set());
r.tasks_writestart.write(|w| w.tasks_writestart().bit(true));
Ok(())
}
fn start_erase(&mut self, address: u32) -> Result<(), Error> {
// TODO: Return these as errors instead.
assert_eq!(address % 4096, 0);
let r = T::regs();
r.erase.ptr.write(|w| unsafe { w.ptr().bits(address) });
r.erase.len.write(|w| w.len()._4kb());
r.events_ready.reset();
r.intenset.write(|w| w.ready().set());
r.tasks_erasestart.write(|w| w.tasks_erasestart().bit(true));
Ok(())
}
/// Raw QSPI read.
///
/// The difference with `read` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub async fn read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
let ondrop = OnDrop::new(Self::blocking_wait_ready);
self.start_read(address, data)?;
self.wait_ready().await;
ondrop.defuse();
Ok(())
}
/// Raw QSPI write.
///
/// The difference with `write` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub async fn write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
let ondrop = OnDrop::new(Self::blocking_wait_ready);
self.start_write(address, data)?;
self.wait_ready().await;
ondrop.defuse();
Ok(())
}
/// Raw QSPI read, blocking version.
///
/// The difference with `blocking_read` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub fn blocking_read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
self.start_read(address, data)?;
Self::blocking_wait_ready();
Ok(())
}
/// Raw QSPI write, blocking version.
///
/// The difference with `blocking_write` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub fn blocking_write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
self.start_write(address, data)?;
Self::blocking_wait_ready();
Ok(())
}
/// Read data from the flash memory.
pub async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.read_raw(address, data).await
}
/// Write data to the flash memory.
pub async fn write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.write_raw(address, data).await
}
2023-01-31 23:48:33 +00:00
/// Erase a sector on the flash memory.
pub async fn erase(&mut self, address: u32) -> Result<(), Error> {
if address >= self.capacity {
return Err(Error::OutOfBounds);
}
let ondrop = OnDrop::new(Self::blocking_wait_ready);
self.start_erase(address)?;
self.wait_ready().await;
ondrop.defuse();
Ok(())
}
2023-01-31 23:48:33 +00:00
/// Read data from the flash memory, blocking version.
pub fn blocking_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.blocking_read_raw(address, data)
}
2023-01-31 23:48:33 +00:00
/// Write data to the flash memory, blocking version.
pub fn blocking_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.blocking_write_raw(address, data)
}
2023-01-31 23:48:33 +00:00
/// Erase a sector on the flash memory, blocking version.
pub fn blocking_erase(&mut self, address: u32) -> Result<(), Error> {
if address >= self.capacity {
return Err(Error::OutOfBounds);
}
self.start_erase(address)?;
Self::blocking_wait_ready();
Ok(())
}
fn bounds_check(&self, address: u32, len: usize) -> Result<(), Error> {
let len_u32: u32 = len.try_into().map_err(|_| Error::OutOfBounds)?;
let end_address = address.checked_add(len_u32).ok_or(Error::OutOfBounds)?;
if end_address > self.capacity {
return Err(Error::OutOfBounds);
}
Ok(())
}
2020-09-22 16:03:43 +00:00
}
impl<'d, T: Instance> Drop for Qspi<'d, T> {
fn drop(&mut self) {
let r = T::regs();
if self.dpm_enabled {
2021-12-23 12:43:14 +00:00
trace!("qspi: doing deep powerdown...");
r.ifconfig1.modify(|_, w| w.dpmen().enter());
// Wait for DPM enter.
// Unfortunately we must spin. There's no way to do this interrupt-driven.
// The READY event does NOT fire on DPM enter (but it does fire on DPM exit :shrug:)
while r.status.read().dpm().is_disabled() {}
2021-05-26 22:42:29 +00:00
// Wait MORE for DPM enter.
// I have absolutely no idea why, but the wait above is not enough :'(
// Tested with mx25r64 in nrf52840-dk, and with mx25r16 in custom board
cortex_m::asm::delay(4096);
}
// it seems events_ready is not generated in response to deactivate. nrfx doesn't wait for it.
r.tasks_deactivate.write(|w| w.tasks_deactivate().set_bit());
// Workaround https://infocenter.nordicsemi.com/topic/errata_nRF52840_Rev1/ERR/nRF52840/Rev1/latest/anomaly_840_122.html?cp=4_0_1_2_1_7
// Note that the doc has 2 register writes, but the first one is really the write to tasks_deactivate,
// so we only do the second one here.
unsafe { ptr::write_volatile(0x40029054 as *mut u32, 1) }
r.enable.write(|w| w.enable().disabled());
// Note: we do NOT deconfigure CSN here. If DPM is in use and we disconnect CSN,
// leaving it floating, the flash chip might read it as zero which would cause it to
// spuriously exit DPM.
gpio::deconfigure_pin(r.psel.sck.read().bits());
gpio::deconfigure_pin(r.psel.io0.read().bits());
gpio::deconfigure_pin(r.psel.io1.read().bits());
gpio::deconfigure_pin(r.psel.io2.read().bits());
gpio::deconfigure_pin(r.psel.io3.read().bits());
2021-12-23 12:43:14 +00:00
trace!("qspi: dropped");
}
}
impl<'d, T: Instance> ErrorType for Qspi<'d, T> {
type Error = Error;
}
impl NorFlashError for Error {
fn kind(&self) -> NorFlashErrorKind {
NorFlashErrorKind::Other
}
}
impl<'d, T: Instance> ReadNorFlash for Qspi<'d, T> {
const READ_SIZE: usize = 4;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(offset, bytes)?;
Ok(())
}
fn capacity(&self) -> usize {
self.capacity as usize
}
}
impl<'d, T: Instance> NorFlash for Qspi<'d, T> {
const WRITE_SIZE: usize = 4;
const ERASE_SIZE: usize = 4096;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
for address in (from..to).step_by(<Self as NorFlash>::ERASE_SIZE) {
self.blocking_erase(address)?;
}
Ok(())
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(offset, bytes)?;
Ok(())
}
}
2023-02-23 21:23:01 +00:00
#[cfg(feature = "nightly")]
mod _eh1 {
2023-03-07 09:46:59 +00:00
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
2023-02-23 21:23:01 +00:00
use super::*;
impl<'d, T: Instance> AsyncNorFlash for Qspi<'d, T> {
2023-02-23 21:23:01 +00:00
const WRITE_SIZE: usize = <Self as NorFlash>::WRITE_SIZE;
const ERASE_SIZE: usize = <Self as NorFlash>::ERASE_SIZE;
2023-03-07 09:46:59 +00:00
async fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
self.write(offset, data).await
}
2023-03-07 09:46:59 +00:00
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
for address in (from..to).step_by(<Self as AsyncNorFlash>::ERASE_SIZE) {
self.erase(address).await?
}
2023-03-07 09:46:59 +00:00
Ok(())
}
2023-02-23 21:23:01 +00:00
}
impl<'d, T: Instance> AsyncReadNorFlash for Qspi<'d, T> {
2023-02-23 21:23:01 +00:00
const READ_SIZE: usize = 4;
2023-03-07 09:46:59 +00:00
async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, data).await
2023-02-23 21:23:01 +00:00
}
2023-02-23 21:23:01 +00:00
fn capacity(&self) -> usize {
self.capacity as usize
}
}
}
pub(crate) mod sealed {
use embassy_sync::waitqueue::AtomicWaker;
/// Peripheral static state
2021-04-14 15:00:28 +00:00
pub struct State {
pub waker: AtomicWaker,
2021-04-14 15:00:28 +00:00
}
2021-04-14 15:00:28 +00:00
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
2021-04-14 15:00:28 +00:00
}
}
}
2021-03-21 19:54:09 +00:00
pub trait Instance {
fn regs() -> &'static crate::pac::qspi::RegisterBlock;
2021-04-14 15:00:28 +00:00
fn state() -> &'static State;
2020-09-22 16:03:43 +00:00
}
}
2021-03-21 19:54:09 +00:00
2023-01-31 23:48:33 +00:00
/// QSPI peripheral instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
2023-01-31 23:48:33 +00:00
/// Interrupt for this peripheral.
2021-03-21 19:54:09 +00:00
type Interrupt: Interrupt;
}
macro_rules! impl_qspi {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::qspi::sealed::Instance for peripherals::$type {
fn regs() -> &'static crate::pac::qspi::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
2021-03-21 19:54:09 +00:00
}
fn state() -> &'static crate::qspi::sealed::State {
static STATE: crate::qspi::sealed::State = crate::qspi::sealed::State::new();
2021-04-14 15:00:28 +00:00
&STATE
}
2021-03-21 19:54:09 +00:00
}
impl crate::qspi::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
2021-03-21 19:54:09 +00:00
}
};
}