Embassy is the next-generation framework for embedded applications. Write safe, correct and energy-efficient embedded code faster, using the Rust programming language, its async facilities, and the Embassy libraries.
The Rust programming language is blazingly fast and memory-efficient, with no runtime, garbage collector or OS. It catches a wide variety of bugs at compile time, thanks to its full memory- and thread-safety, and expressive type system.
Rust's <ahref="https://rust-lang.github.io/async-book/">async/await</a> allows for unprecedently easy and efficient multitasking in embedded systems. Tasks get transformed at compile time into state machines that get run cooperatively. It requires no dynamic memory allocation, and runs on a single stack, so no per-task stack size tuning is required. It obsoletes the need for a traditional RTOS with kernel context switching, and is <ahref="https://tweedegolf.nl/en/blog/65/async-rust-vs-rtos-showdown">faster and smaller than one!</a>
- **Hardware Abstraction Layers** - HALs implement safe, idiomatic Rust APIs to use the hardware capabilities, so raw register manipulation is not needed. The Embassy project maintains HALs for select hardware, but you can still use HALs from other projects with Embassy.
No more messing with hardware timers. <ahref="https://docs.embassy.dev/embassy-time">embassy_time</a> provides Instant, Duration and Timer types that are globally available and never overflow.
Tasks on the same async executor run cooperatively, but you can create multiple executors with different priorities, so that higher priority tasks preempt lower priority ones. See the <ahref="https://github.com/embassy-rs/embassy/blob/master/examples/nrf52840/src/bin/multiprio.rs">example</a>.
Easily build devices with years of battery life. The async executor automatically puts the core to sleep when there's no work to do. Tasks are woken by interrupts, there is no busy-loop polling while waiting.
The <ahref="https://github.com/embassy-rs/nrf-softdevice">nrf-softdevice</a> crate provides Bluetooth Low Energy 4.x and 5.x support for nRF52 microcontrollers.
<ahref="https://docs.embassy.dev/embassy-lora/">embassy-lora</a> supports LoRa networking on STM32WL wireless microcontrollers and Semtech SX126x and SX127x transceivers.
<ahref="https://docs.embassy.dev/embassy-usb/">embassy-usb</a> implements a device-side USB stack. Implementations for common classes such as USB serial (CDC ACM) and USB HID are available, and a rich builder API allows building your own.
<ahref="https://github.com/embassy-rs/embassy/tree/master/embassy-boot">embassy-boot</a> is a lightweight bootloader supporting firmware application upgrades in a power-fail-safe way, with trial boots and rollbacks.
Embassy is guaranteed to compile on the latest stable Rust version at the time of release. It might compile with older versions but that may change in any new patch release.
These are enabled by activating the `nightly` Cargo feature. If you do so, Embassy is guaranteed to compile on the exact nightly version specified in `rust-toolchain.toml`. It might compile with older or newer nightly versions, but that may change in any new patch release.