embassy/embassy-stm32/src/rcc/f013.rs

475 lines
14 KiB
Rust
Raw Normal View History

use crate::pac::flash::vals::Latency;
2024-02-14 00:10:59 +01:00
#[cfg(stm32f1)]
pub use crate::pac::rcc::vals::Adcpre as ADCPrescaler;
#[cfg(stm32f3)]
pub use crate::pac::rcc::vals::Adcpres as AdcPllPrescaler;
use crate::pac::rcc::vals::Pllsrc;
#[cfg(stm32f1)]
pub use crate::pac::rcc::vals::Pllxtpre as PllPreDiv;
#[cfg(any(stm32f0, stm32f3))]
pub use crate::pac::rcc::vals::Prediv as PllPreDiv;
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Pllmul as PllMul, Ppre as APBPrescaler, Sw as Sysclk};
use crate::pac::{FLASH, RCC};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(8_000_000);
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum PllSource {
HSE,
HSI,
2024-02-14 00:10:59 +01:00
#[cfg(rcc_f0v4)]
HSI48,
}
#[derive(Clone, Copy)]
pub struct Pll {
pub src: PllSource,
/// PLL pre-divider.
///
2024-02-14 00:10:59 +01:00
/// On some chips, this must be 2 if `src == HSI`. Init will panic if this is not the case.
pub prediv: PllPreDiv,
/// PLL multiplication factor.
pub mul: PllMul,
2023-09-05 16:46:57 -05:00
}
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37)))]
2023-09-05 16:46:57 -05:00
#[derive(Clone, Copy)]
pub enum AdcClockSource {
Pll(AdcPllPrescaler),
Hclk(AdcHclkPrescaler),
}
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37)))]
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum AdcHclkPrescaler {
Div1,
Div2,
Div4,
}
2024-02-14 00:10:59 +01:00
#[cfg(stm32f334)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum HrtimClockSource {
BusClk,
PllClk,
2023-09-05 16:46:57 -05:00
}
/// Clocks configutation
#[non_exhaustive]
pub struct Config {
pub hsi: bool,
pub hse: Option<Hse>,
2024-02-14 00:10:59 +01:00
#[cfg(crs)]
pub hsi48: Option<super::Hsi48Config>,
pub sys: Sysclk,
pub pll: Option<Pll>,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
2024-02-14 00:10:59 +01:00
#[cfg(not(stm32f0))]
pub apb2_pre: APBPrescaler,
2024-02-14 00:10:59 +01:00
#[cfg(stm32f1)]
pub adc_pre: ADCPrescaler,
#[cfg(all(stm32f3, not(rcc_f37)))]
pub adc: AdcClockSource,
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
pub adc34: AdcClockSource,
/// Per-peripheral kernel clock selection muxes
pub mux: super::mux::ClockMux,
pub ls: super::LsConfig,
}
impl Default for Config {
fn default() -> Self {
Self {
hsi: true,
hse: None,
2024-02-14 00:10:59 +01:00
#[cfg(crs)]
hsi48: Some(Default::default()),
sys: Sysclk::HSI,
pll: None,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
2024-02-14 00:10:59 +01:00
#[cfg(not(stm32f0))]
apb2_pre: APBPrescaler::DIV1,
ls: Default::default(),
2024-02-14 00:10:59 +01:00
#[cfg(stm32f1)]
// ensure ADC is not out of range by default even if APB2 is maxxed out (36mhz)
adc_pre: ADCPrescaler::DIV6,
#[cfg(all(stm32f3, not(rcc_f37)))]
adc: AdcClockSource::Hclk(AdcHclkPrescaler::Div1),
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
adc34: AdcClockSource::Hclk(AdcHclkPrescaler::Div1),
2024-02-20 17:54:35 -08:00
mux: Default::default(),
}
}
}
/// Initialize and Set the clock frequencies
pub(crate) unsafe fn init(config: Config) {
// Turn on the HSI
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
// Use the HSI clock as system clock during the actual clock setup
RCC.cfgr().modify(|w| w.set_sw(Sysclk::HSI));
while RCC.cfgr().read().sws() != Sysclk::HSI {}
// Configure HSI
let hsi = match config.hsi {
false => None,
true => Some(HSI_FREQ),
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
match hse.mode {
HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)),
HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)),
}
RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
2024-02-14 00:10:59 +01:00
// configure HSI48
#[cfg(crs)]
let hsi48 = config.hsi48.map(|config| super::init_hsi48(config));
#[cfg(not(crs))]
let hsi48: Option<Hertz> = None;
// Enable PLL
let pll = config.pll.map(|pll| {
let (src_val, src_freq) = match pll.src {
2024-02-14 00:10:59 +01:00
#[cfg(any(rcc_f0v3, rcc_f0v4, rcc_f3v3))]
PllSource::HSI => (Pllsrc::HSI_DIV_PREDIV, unwrap!(hsi)),
2024-02-14 00:10:59 +01:00
#[cfg(not(any(rcc_f0v3, rcc_f0v4, rcc_f3v3)))]
PllSource::HSI => {
if pll.prediv != PllPreDiv::DIV2 {
panic!("if PLL source is HSI, PLL prediv must be 2.");
}
(Pllsrc::HSI_DIV2, unwrap!(hsi))
}
PllSource::HSE => (Pllsrc::HSE_DIV_PREDIV, unwrap!(hse)),
2024-02-14 00:10:59 +01:00
#[cfg(rcc_f0v4)]
PllSource::HSI48 => (Pllsrc::HSI48_DIV_PREDIV, unwrap!(hsi48)),
};
let in_freq = src_freq / pll.prediv;
assert!(max::PLL_IN.contains(&in_freq));
let out_freq = in_freq * pll.mul;
assert!(max::PLL_OUT.contains(&out_freq));
2024-02-14 00:10:59 +01:00
#[cfg(not(stm32f1))]
RCC.cfgr2().modify(|w| w.set_prediv(pll.prediv));
RCC.cfgr().modify(|w| {
w.set_pllmul(pll.mul);
w.set_pllsrc(src_val);
2024-02-14 00:10:59 +01:00
#[cfg(stm32f1)]
w.set_pllxtpre(pll.prediv);
});
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
out_freq
});
2024-02-25 16:12:32 -08:00
#[cfg(stm32f3)]
2024-02-25 16:25:42 -08:00
let pll_mul_2 = pll.map(|pll| pll * 2u32);
2024-02-25 16:12:32 -08:00
2024-02-14 00:10:59 +01:00
#[cfg(any(rcc_f1, rcc_f1cl, stm32f3))]
let usb = match pll {
2024-02-14 00:10:59 +01:00
Some(Hertz(72_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1_5),
Some(Hertz(48_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1),
_ => None,
2024-02-14 00:10:59 +01:00
}
.map(|usbpre| {
RCC.cfgr().modify(|w| w.set_usbpre(usbpre));
Hertz(48_000_000)
});
// Configure sysclk
let sys = match config.sys {
Sysclk::HSI => unwrap!(hsi),
Sysclk::HSE => unwrap!(hse),
Sysclk::PLL1_P => unwrap!(pll),
_ => unreachable!(),
};
let hclk = sys / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre);
2024-02-14 00:10:59 +01:00
#[cfg(not(stm32f0))]
let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk, config.apb2_pre);
2024-02-14 00:10:59 +01:00
#[cfg(stm32f0)]
let (pclk2, pclk2_tim) = (pclk1, pclk1_tim);
assert!(max::HCLK.contains(&hclk));
assert!(max::PCLK1.contains(&pclk1));
2024-02-14 00:10:59 +01:00
#[cfg(not(stm32f0))]
assert!(max::PCLK2.contains(&pclk2));
2024-02-14 00:10:59 +01:00
#[cfg(stm32f1)]
let adc = pclk2 / config.adc_pre;
#[cfg(stm32f1)]
assert!(max::ADC.contains(&adc));
// Set latency based on HCLK frquency
2024-02-14 00:10:59 +01:00
#[cfg(stm32f0)]
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
_ => Latency::WS1,
};
#[cfg(any(stm32f1, stm32f3))]
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
..=48_000_000 => Latency::WS1,
_ => Latency::WS2,
};
FLASH.acr().modify(|w| {
w.set_latency(latency);
// RM0316: "The prefetch buffer must be kept on when using a prescaler
// different from 1 on the AHB clock.", "Half-cycle access cannot be
// used when there is a prescaler different from 1 on the AHB clock"
2024-02-14 00:10:59 +01:00
#[cfg(stm32f3)]
if config.ahb_pre != AHBPrescaler::DIV1 {
w.set_hlfcya(false);
w.set_prftbe(true);
}
2024-02-14 00:10:59 +01:00
#[cfg(not(stm32f3))]
w.set_prftbe(true);
});
// Set prescalers
// CFGR has been written before (PLL, PLL48) don't overwrite these settings
RCC.cfgr().modify(|w| {
2024-02-14 00:10:59 +01:00
#[cfg(not(stm32f0))]
{
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
}
#[cfg(stm32f0)]
w.set_ppre(config.apb1_pre);
w.set_hpre(config.ahb_pre);
2024-02-14 00:10:59 +01:00
#[cfg(stm32f1)]
w.set_adcpre(config.adc_pre);
});
// Wait for the new prescalers to kick in
// "The clocks are divided with the new prescaler factor from
// 1 to 16 AHB cycles after write"
cortex_m::asm::delay(16);
// CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings
RCC.cfgr().modify(|w| w.set_sw(config.sys));
2024-02-13 00:58:18 +01:00
while RCC.cfgr().read().sws() != config.sys {}
// Disable HSI if not used
if !config.hsi {
RCC.cr().modify(|w| w.set_hsion(false));
}
let rtc = config.ls.init();
// TODO: all this ADC stuff should probably go into the ADC module, not here.
// Most STM32s manage ADC clocks in a similar way with ADCx_COMMON.
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37)))]
use crate::pac::adccommon::vals::Ckmode;
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37)))]
let adc = {
#[cfg(peri_adc1_common)]
let common = crate::pac::ADC1_COMMON;
#[cfg(peri_adc12_common)]
let common = crate::pac::ADC12_COMMON;
match config.adc {
AdcClockSource::Pll(adcpres) => {
RCC.cfgr2().modify(|w| w.set_adc12pres(adcpres));
common.ccr().modify(|w| w.set_ckmode(Ckmode::ASYNCHRONOUS));
unwrap!(pll) / adcpres
}
AdcClockSource::Hclk(adcpres) => {
assert!(!(adcpres == AdcHclkPrescaler::Div1 && config.ahb_pre != AHBPrescaler::DIV1));
let (div, ckmode) = match adcpres {
AdcHclkPrescaler::Div1 => (1u32, Ckmode::SYNCDIV1),
AdcHclkPrescaler::Div2 => (2u32, Ckmode::SYNCDIV2),
AdcHclkPrescaler::Div4 => (4u32, Ckmode::SYNCDIV4),
};
common.ccr().modify(|w| w.set_ckmode(ckmode));
hclk / div
}
}
};
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
let adc34 = {
#[cfg(peri_adc3_common)]
let common = crate::pac::ADC3_COMMON;
#[cfg(peri_adc34_common)]
let common = crate::pac::ADC34_COMMON;
match config.adc34 {
AdcClockSource::Pll(adcpres) => {
RCC.cfgr2().modify(|w| w.set_adc34pres(adcpres));
common.ccr().modify(|w| w.set_ckmode(Ckmode::ASYNCHRONOUS));
unwrap!(pll) / adcpres
}
AdcClockSource::Hclk(adcpres) => {
assert!(!(adcpres == AdcHclkPrescaler::Div1 && config.ahb_pre != AHBPrescaler::DIV1));
2023-09-15 17:35:53 -05:00
let (div, ckmode) = match adcpres {
AdcHclkPrescaler::Div1 => (1u32, Ckmode::SYNCDIV1),
AdcHclkPrescaler::Div2 => (2u32, Ckmode::SYNCDIV2),
AdcHclkPrescaler::Div4 => (4u32, Ckmode::SYNCDIV4),
};
common.ccr().modify(|w| w.set_ckmode(ckmode));
hclk / div
}
}
};
/*
TODO: Maybe add something like this to clock_mux? How can we autogenerate the data for this?
let hrtim = match config.hrtim {
// Must be configured after the bus is ready, otherwise it won't work
HrtimClockSource::BusClk => None,
HrtimClockSource::PllClk => {
use crate::pac::rcc::vals::Timsw;
// Make sure that we're using the PLL
let pll = unwrap!(pll);
assert!((pclk2 == pll) || (pclk2 * 2u32 == pll));
2023-10-17 20:31:44 -05:00
RCC.cfgr3().modify(|w| w.set_hrtim1sw(Timsw::PLL1_P));
Some(pll * 2u32)
}
};
*/
2024-02-20 17:54:35 -08:00
config.mux.init();
set_clocks!(
hsi: hsi,
hse: hse,
pll1_p: pll,
2024-02-25 16:12:32 -08:00
#[cfg(stm32f3)]
pll1_p_mul_2: pll_mul_2,
2024-02-26 03:00:04 +01:00
hsi_div_244: hsi.map(|h| h / 244u32),
sys: Some(sys),
pclk1: Some(pclk1),
pclk2: Some(pclk2),
pclk1_tim: Some(pclk1_tim),
pclk2_tim: Some(pclk2_tim),
hclk1: Some(hclk),
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37)))]
adc: Some(adc),
2024-02-14 00:10:59 +01:00
#[cfg(all(stm32f3, not(rcc_f37), adc3_common))]
adc34: Some(adc34),
rtc: rtc,
2024-02-14 00:10:59 +01:00
hsi48: hsi48,
#[cfg(any(rcc_f1, rcc_f1cl, stm32f3))]
usb: usb,
lse: None,
);
}
2024-02-14 00:10:59 +01:00
#[cfg(stm32f0)]
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(24_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(48_000_000);
}
#[cfg(stm32f1)]
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
#[cfg(not(rcc_f1cl))]
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(16_000_000);
#[cfg(not(rcc_f1cl))]
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000);
#[cfg(rcc_f1cl)]
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(3_000_000)..=Hertz(25_000_000);
#[cfg(rcc_f1cl)]
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(50_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(36_000_000);
pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(72_000_000);
pub(crate) const ADC: RangeInclusive<Hertz> = Hertz(0)..=Hertz(14_000_000);
}
#[cfg(stm32f3)]
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(36_000_000);
pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(24_000_000);
pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(72_000_000);
}